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A B S T R A C T

Guardrails installed on road bridges are essential to the safety of vehicles and road users. However, infrastructure 
managers often lack accurate and up-to-date inventories of the safety barriers on their bridges. Moreover, the 
limited availability of financial resources, combined with the lack of adequately trained personnel, makes it 
difficult for these entities to effectively assess the condition of such critical infrastructure, even though, in most 
cases, it is only necessary to recognize the barrier code compliance, which could be done even by less trained 
personnel. This paper proposes an integrated methodology to automate the assessment of road guardrails 
installed on bridges using open-source data and deep learning (DL) algorithms. Besides the use of the consoli
dated YOLO (You Only Look Once) object detection algorithm to classify the safety barriers to establish whether 
they match the current standards, the process innovatively involves the extraction of bridge information from 
OpenStreetMap (OSM) to construct a database of existing bridges. This latter step is integrated with Google Street 
View API, for the extraction of images of each bridge’s safety barriers to be analysed by YOLO. The synergic 
concatenation of these three steps (OSM, Google Street View, YOLO) into a unique software tool, provides road 
managers with a cost-effective and efficient tool to remotely survey the guardrails installed on their bridges, 
permitting to prioritize maintenance and upgrading interventions. The methodology not only facilitates the task 
of infrastructure monitoring but also helps ensure the safety of road users by timely identifying non-compliant 
safety barriers. Finally, the developed procedure allowed to identify non-conforming guardrails on a subset of 
bridges located in a southern Italy region permitting to compute the intervention cost for their replacement.

1. Introduction and motivation

The management and maintenance of bridge infrastructure is a key 
priority for road safety, as bridges are critical components in road net
works, especially due to their exposure to various mechanical and 
environmental stresses over time [1]. While a relevant part of the 
research is dedicated to the bridge structural components’ assessment (i. 
e. what is below the road pavement, [2]), little evidence of research can 
be found about guardrails (aka safety barriers, safety railings or restraint 
systems) that are devoted to preventing vehicles to fall from bridges, 
causing frequently fatal consequences (what is above the road) [3]. The 
degradation of these bridge components is a significant concern [4], as 
these barriers are designed to prevent vehicles from leaving the roadway 
and causing fatal accidents in case of a collision or other hazardous 
events as stated by standards and codes [5]. In fact, over the past ten 
years, the two main accidents occurred in Italy that cause more than 
sixty fatalities, could have been mitigated by the presence of up-to-date 
barriers [6]. Therefore, ensuring the structural integrity and regulatory 

compliance of these barriers is essential for the safety of road users [5].
Following recent disasters such as the Morandi bridge collapse [7] 

new guidelines for bridge management were issued in Italy [8,9]. 
However, local authorities responsible for maintaining such infrastruc
ture, including municipalities and provinces, often struggle with several 
challenges. One major issue is the lack of detailed, up-to-date in
ventories of the bridges under their jurisdiction [10]. In many cases, 
infrastructure databases are either incomplete or totally absent, leading 
to gaps in knowledge about the condition and safety features of bridges, 
preventing the setting up of Bridge Management Systems (BMS) [11]. 
This is particularly problematic for older bridges, where safety barriers 
may not meet current regulatory standards [12].

The limitations faced by local road authorities extend beyond data 
availability. Many of these agencies operate with limited human and 
financial resources [13], making it difficult to carry out regular in
spections and assessments of bridge infrastructure, even for the only 
code-compliance classification. The personnel responsible for these 
tasks is often overwhelmed by serval activities and is unable to assess 
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bridge barriers. As a result, non-compliant barriers may remain unno
ticed for years, while limited resources are misallocated to less critical 
infrastructure elements.

A further complicating factor is the huge volume of infrastructure 
that needs to be managed. In many provinces and municipalities, road 
authorities are responsible for hundreds of kilometers of roads and 
hundreds of bridges, often with minimal staffing [14]. Out of the total 
850,000 km of roads in Italy (Fig. 1), only 4 % are managed by national 
agencies (state roads) or concessionaries (motorways). Therefore, mu
nicipalities and provinces are responsible for 816,000 km of roads, with 
the consequent amount of safety barriers on bridges and road edges.

Among the estimated 120,000 bridges in Italy [10], about 30,000 are 
on state roads or motorways and 90,000 are on local roads. Therefore, 
conducting manual inspections of each bridge is a time-consuming and 
resource-intensive process, particularly for remote or difficult-to-access 
structures. This leads to significant delays in identifying and addressing 
non-compliant safety barriers, creating potential hazards for road users 
[15]. Lastly, it must be noted that even when lacking guardrails are 
identified, their replacement often requires strengthening interventions 
on the supporting members such as the cantilever part of the bridge slab 
and the edge curb [6], increasing the fund allocation needed.

In response to these challenges, there is a growing need for auto
mated and integrated systems that can streamline the process of 
assessing the condition of bridge safety barriers [11]. The possibility of 
automatically detect guardrail types and condition to speed-up the 
maintenance processes would solve this problem. As an example, in [16] 
an automated approach was proposed to automatically detect road 
distresses and attribute a pavement rating to prioritize interventions. In 
[17,18] procedures were set up to detect safety barriers, not only along 
bridges, using laser scanner technologies and other image acquisition 
devices and vision data fusion techniques to merge information 
collected through different means. More recently Gao et al. [19] pro
posed the use of Mobile Laser Scanning (MLS) systems to obtain highly 
dense 3D point clouds that enable the acquisition of accurate traffic 
facilities and therefore guardrail types and conditions. These methods, 
however, require highly specialized personnel, the management of large 
amount of data and are time-consuming since it is requested that a 
vehicle travels the road to collect the needed information. Moreover, 
expensive devices for image acquisition are often necessary.

Given the mentioned constraints, this paper presents a comprehen
sive methodology for constructing a bridge database using Open
StreetMap, integrating visual data from Google Street View, and 
applying deep learning algorithms to assess the compliance of bridge 
safety barriers. In particular, the proposed approach is devoted to the 
barrier classification to assess its compliance with the current road 
safety standards, without the purpose of replacing the work of special
ized engineering personnel able to assess the functionality, integrity and 

effectiveness of any roadside installed barrier.
In fact, the system architecture is organized through Visual Basic for 

Applications routines in order to manage the process flow through a 
single digital tool, leading only to the barrier classification. The 
following sections provide a detailed description of each step in the 
process and discuss the potential benefits and limitations of this 
approach.

2. Methodology

Current methodologies for guardrail assessment, are based on visual 
inspections made by professionals travelling to specified bridge loca
tions to acquire guardrail details such as the type, eventual damage, 
information about their connection with the bridge supporting ele
ments. This requires traffic limitation consisting of at least one lane 
closure for each bridge side. This manual approach requires a minimum 
4-person team out of which, 3 are related to the lane closure and safety 
signals installation, and one person (an engineer) dedicated to barrier 
survey. Such a methodological framework is extremely slow since one 
survey team can inspect maximum three to four bridges per day. The 
main source of slowness is represented by the need of installation and 
uninstallation of the safety apparatus for lane closure. Alternatively, the 
simple passage on the bridge of a vehicle equipped with a high- 
resolution acquisition device (e.g., LiDAR) could avoid the need for 
lane closures, thus permitting a higher productivity, even though forcing 
to collect a large amount of data (point clouds) to be interpreted through 
labour-intensive desk work. In this way, about 20 bridges [17] per day 
could be inspected overall.

When maintenance issues are mainly related to guardrail type 
detection, in order to make a decision on the need to replace possibly 
outdated barriers, in theory, design documents could provide informa
tion on the originally installed guardrails. However, many bridge
s—especially on local roads—lack updated documentation (the design 
documents are often not available), and over time barriers may have 
been replaced, removed, or degraded without proper recordkeeping. 
Therefore, relying solely on original documents may not reflect the 
current state of the infrastructure. In this case, even a remotely acquired 
image could be enough to greatly speed-up the process of more than one 
order of magnitude. In this sense, the present paper proposes a pro
cedure to reduce the need for both expensive acquisition devices and 
time-consuming activities, exploiting already existing data that could be 
used also for remote detections. In fact, by leveraging open-source tools 
and advanced data analysis techniques, local authorities can improve 
the efficiency of their infrastructure management processes while 
reducing reliance on manual inspections [20]. Open-source geographic 
data platforms, such as OpenStreetMap (OSM), are particularly prom
ising for this purpose, as they offer detailed, accurate, and freely 
accessible information about bridges and road networks across almost 
all the world [21].

OSM databases can serve as the foundation for further analysis, 
enabling road authorities to monitor and manage their bridge assets 
more effectively [22]. These databases can be further extended by 
manually integrating information retained by road managers in a way to 
give more consistency and completeness to data.

The next step in automating the assessment process involves the use 
of visual data to evaluate the condition of bridge safety barriers. Google 
Street View provides a valuable source of panoramic images of road 
networks and surrounding infrastructure, including bridges [23]. By 
using the geographic coordinates extracted from OSM, images of the 
safety barriers on each bridge can be automatically retrieved through 
the Google Street View API [24]. These images can then be analysed to 
determine whether the barriers meet current safety standards [5]. The 
fact that Google Street View could introduces limitations, as incomplete 
or outdated imagery could significantly impact the assessment accuracy, 
is not a significant concern in most cases. In fact, imagery is available 
with a yearly cadence, in some cases even more frequently, with images Fig. 1. Shares of roads in Italy by management body.
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taken more than once a year (Fig. 2).
Given the volume of data involved, manual analysis of the images is 

impractical. Instead, deep learning algorithms, such as You Only Look 
Once (YOLO), can be employed to automate the object detection pro
cess. YOLO is an advanced object detection algorithm that has been 
widely used for infrastructure monitoring and safety assessments [25]. 
This algorithm has already been successfully used in infrastructure 
monitoring activities like in [26] in which Yolo was used to detect bridge 
elastomeric bearing damage, helping in automatically recognizing 
cracks, shearing and detaching issues in devices.

By training a YOLO model to recognize different types of safety 
barriers, it is possible to automatically classify the barriers in the Street 
View images as either compliant or non-compliant with regulatory 
standards. This automated classification allows local authorities to 
quickly identify high-risk bridges and prioritize their maintenance ef
forts, identifying the bridges in need of safety barrier replacement 
(Fig. 3).

The use of these open-source tools and deep learning techniques 
(Option 2 in Fig. 3) offers several advantages for local road managers. 
First, it significantly reduces the time and cost associated with manual 
inspections (Option 1 in Fig. 3), making it feasible to conduct large-scale 
assessments of bridge infrastructure [27]. Furthermore, it improves the 
accuracy and consistency of barrier assessments, minimizing the po
tential for human error [28]. Finally, it enables local authorities to focus 
their limited resources on the most critical infrastructure needs, 
ensuring that non-compliant safety barriers are addressed in a timely 
manner. It must also be considered that the methodology is mostly 
automated. Human intervention is required only in two steps such as the 
initial model training and annotation (done once, the model here pre
sented can be used) and potential manual correction of missing co
ordinates for bridges in rural areas. In summary, while each individual 
technology (OSM, GSV, YOLO) is well-established, the novelty of this 
work lies in their automated integration into a single, low-cost, scalable 
framework that allows for regional assessment and prioritization of 
guardrail replacement. This integration is achieved through custom VBA 
routines that link geospatial data, image retrieval, and deep learning 
inference in a fully operational tool usable even by non-technical staff. 
In the following sections, each of the steps involved in the option 2 are 
described in detail.

2.1. Exploiting open data for bridge dataset development

OpenStreetMap (OSM) is a crowd-sourced geographic database that 
provides real-time, up-to-date information on various types of infra
structure, including bridges, roads, and pathways. By extracting the 
geographic coordinates of bridges from OSM, it is possible to construct 
an infrastructure database that includes critical attributes such as bridge 
type, location, and connected roadways [21].

To extract bridges from OpenStreetMap, the process begins by 
defining the geographic area of interest, which can be done using 

latitude and longitude coordinates to specify a region. Then, a query is 
sent to OSM using a tool like the Overpass API to retrieve data tagged as 
bridges. Bridges in OSM are identified by the tag `bridge=yes`.

Once the query is executed, the output data typically includes 
additional information such as the type of road (e.g., motorway, trunk, 
residential) and other relevant tags, like the structure type or the ma
terial of the bridge. This information is extracted and organized into a 
dataset for further analysis, which can include details such as the 
bridge’s location, length, and associated road network.

The resulting data can be saved in various formats, such as JSON or 
XML, and further processed for tasks like generating maps or integrating 
the information into a larger database for infrastructure management. In 
this case, the database has been treated in Excel environment.

An important piece of information is related to the bridge location. 
OSM typically provides start and end coordinates, even though, for 
longer bridges, it also provides a series of intermediate coordinates 
describing the bridge path. In fact, for bridges longer than approxi
mately 40 m, OSM coordinates every 25 m of length are provided. This 
allows to estimate the bridge length as well as the heading direction 
along the bridge development.

One of the main tags in OSM is related to Road type as shown in 
Table 1 [29]. They have been grouped in major and minor road in
frastructures. This is an essential distinction since in minor road in
frastructures, safety barriers are often absent due to low traffic volume 
and the poor pavement installed.

Therefore, the attention will be focused on major road infrastructure, 
where it is essential guaranteeing the effectiveness of guardrails on 
bridges.

2.1.1. The Basilicata region bridge dataset
In this study, the proposed methodology was applied to a sample of 

bridges located in the Basilicata region, Italy. The Basilicata region 
presents a varied and complex road network, characterized by a com
bination of national highways, regional roads, and local municipal 
roads. The bridge dataset for this region includes approximately 2,000 
bridges (Fig. 4), which serve as a representative sample for testing the 
automated barrier assessment methodology described earlier. The con
struction of this dataset was made possible by exploiting OpenStreetMap 
(OSM) data and cross-referencing it with official road infrastructure 
databases.

The dataset contains a variety of information about each bridge, 
including its geographical location, bridge length, type of road it serves. 
In the following, it is provided an overview of the distribution of bridges 
based on their road type and length, highlighting the main character
istics of the dataset.

2.1.2. Bridge distribution by road type
The first factor considered in the analysis is the distribution of 

bridges according to the type of road they are located on. Fig. 5 shows 
the distribution of bridge development (in km) across different road 
types, alongside the percentage of interchanges associated with each 
road type.

Motorways and trunks (roads that differ from other road types pri
marily in terms of design, access control, and function within a road 
network) show a significant portion of bridge development, with 
approximately 27 to 28 km of bridges respectively. This reflects their 
importance in supporting heavy traffic volumes and long-distance 
travel. State Roads exhibit the highest development of bridges, 
exceeding 60 km in total. This highlights the strategic role these roads 
play in connecting various towns and cities across Basilicata. Provincial 
roads follow state roads in terms of bridge length, with roughly 40 km of 
bridge infrastructure. They serve as essential connectors between 
smaller municipalities and rural areas. Lastly, municipal roads account 
for a smaller but still significant portion of bridge development, with 
about 20 km of length. The remaining bridges are distributed across 
other road categories, with appreciable lengths observed, summing up 

Fig. 2. Google Street View images available at given timeframes for a specific 
bridge on a highway.
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to >20 km. These are mainly rural roads.
The graph also illustrates the percentage bridges related to in

terchanges (junctions) for each road type, which is, as expected, highest 
on highways and progressively decreases on provincial and municipal 
roads. This is indicative of the higher complexity of the road network 
and traffic management on major infrastructures compared to smaller 
roads.

2.1.3. Bridge length distribution
The second factor analysed is the distribution of bridge lengths 

within the dataset. The bridge length can be calculated using the bridge 
coordinates, by summing up the length of segments connecting the 
points that describe the bridge path, from the start to the end point.

Fig. 6 presents the number of bridges categorized by their length and 
the cumulative percentage of bridges across different length classes. 
Most bridges (approximately 660 bridges) are relatively short, ranging 
between 25 and 50 m in length. This is typical for smaller, rural bridges 
or those crossing minor rivers or streams. Bridges measuring between 10 
and 25 m also form a significant portion of the dataset, with 282 bridges 
falling into this category. Bridges with lengths between 50 and 100 m 
account for another significant subset, with 320 bridges in this range. As 
the length increases, the number of bridges decreases. In fact, bridges in 
the range 100 - 200 m are less common (171 bridges), while longer 
bridges, such as those spanning 200 to 500 m, number around 103 and 
132 respectively. The longest bridges in the dataset, with length be
tween 500 m and 2500 m, are rare, with only a few structures over 1000 
m in length.

The cumulative curve shows that 90 % of the bridges in the dataset 
are <250 m long, while the remaining 10 % are spread across longer 
length values.

This dataset, composed of bridges from the Basilicata region, serves 
as a suitable case study for testing the automated system for recognizing 
and classifying safety barriers. Most bridges are relatively short, yet 
diverse in their structural characteristics and road types. This diversity 
enables a thorough evaluation of the proposed methodology across a 

Fig. 3. Framework for remote automated bridge guardrails assessment.

Table 1 
Road types classified in OSM datasets.

Group Road type Description

Major road 
infrastructures

motorway High-speed road, restricted access (e.g., 
freeways)

trunk Major road connecting cities, fewer 
access controls than motorways

primary Main roads linking towns and cities
secondary Roads connecting smaller towns and 

villages
motorway_link Short connector roads linking 

motorways to other roads
trunk_link Short connectors linking trunk roads to 

other roads
primary_link Connectors linking primary roads to 

trunk roads or other roads
secondary_link Connectors linking secondary roads to 

other roads
Minor road 

infrastructures
tertiary Roads serving local traffic between 

smaller settlements
tertiary_link Connectors linking tertiary roads to 

other roads
unclassified Minor rural or local roads without a 

specific classification
residential Roads within residential areas, slower 

speeds
service Access roads to services, parking, or 

industrial areas
track Unpaved roads, often used for 

agriculture or forestry
pedestrian Roads or streets designed for pedestrian 

traffic
footway Paths dedicated to pedestrians
cycleway Paths dedicated to bicycles
path General-purpose paths for non- 

motorized traffic
living_street Low-speed roads prioritizing 

pedestrians and cyclists
construction Roads currently under construction
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wide range of bridge configurations, facilitating the identification of 
potential non-compliance in safety barrier installations.

2.2. Automated extraction of bridge guardrails images

The process for extracting Street View images of bridges in the 

Basilicata region begins with the identification of the geographic co
ordinates (latitude and longitude) of each bridge, specifically the start 
and end points. These coordinates are essential for obtaining images that 
provide a clear view of the road and the guardrails installed on the 
bridges. The images serve as input for a deep learning system that de
tects the type of barriers and determines if they comply with current 
safety regulations.

To capture the images, the Google Street View API is used [24]. This 
API allows for image retrieval by making an HTTP request that includes 
parameters such as location, heading, and pitch. The location parameter 
is provided by the coordinates of the bridge’s starting point, while the 
pitch is fixed at 0 degrees to ensure a horizontal view of the road. This 
setting is devoted to obtaining a clear, side-on image of the barriers, not 
an elevated or depressed angle.

The heading parameter, which determines the direction the camera 
faces, is calculated based on the coordinates of the bridge’s start and end 
points. The heading angle is computed using the following formula, 
which calculates the angle relative to true North: 

θ = atan2(sin(LON2 − LON1)⋅cos(LAT2), cos(LAT1)⋅sin(LAT2)

− sin(LAT1)⋅cos(LAT2)⋅cos(LON2 − LON1))

Where:
atan2 is a mathematical function that computes the arc tangent of 

two arguments, y and x, representing the projections on Cartesian plane 
of the segment connecting points 1 and 2 (assuming that point 1 co
incides with the origin, see Fig. 7). Unlike the standard arc tangent 
function (atan), which only considers the ratio y/x, atan2 considers 
both the numerator (y) and denominator (x) to determine the correct 
angle, considering the quadrant of the point (x, y).

It returns the angle in radians, typically between − π and +π (or 
− 180◦ to +180◦). This makes it especially useful for applications that 
require precise direction calculations, such as in navigation, robotics, 
and computer graphics. Thus, atan2 is a more robust version of the arc 
tangent function that accurately calculates the angle by considering both 
coordinates of the point and resolving the quadrant ambiguity (Fig. 7). 

- LAT1LON1 are the latitude and longitude of the start point (1),
- LAT2LON2 are the latitude and longitude of the end point (2),
- θ is the resulting heading angle.

Points (1) and (2) are usually the first and the second point provided 
by OSM as bridge coordinates. As said, for short bridges, they coincide 
with the start and end points.

The heading angle (θ) ensures that the image is aligned with the 
direction of the road, providing the optimal view for guardrail detection. 
The HTTP request to the Google Street View API includes these 

Fig. 4. Geographic locations of bridges included in the dataset.

Fig. 5. Distribution of bridge lengths by road type and the percentage of 
junctions (interchanges).

Fig. 6. Length distribution of bridges and viaducts.
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parameters in the following format:
https://maps.googleapis.com/maps/api/streetview? 

size=640×640&location=LAT, 
LON&heading=HEADING&pitch=0&key=YOUR_API_KEY

Where: 

- LAT, LON are the latitude and longitude coordinates,
- HEADING is the calculated angle θ,
- pitch=0 ensures a horizontal view,
- key=YOUR_API_KEY is your Google API key (provided upon the 

activating a Google Cloud account).

In case points (1) and (2) are not alinged along the same road border 
the calculated heading angle could be not perfectly aligned with the 
road direction, as can be seen for some of the road pictures in Fig. 8 (e.g., 
261, 274 etc.…). However, also in this cases the resulting picture can be 
utilized for the safety barrier recognition and no correction is needed.

The image extraction through the above-mentioned HTTP request is 
made automatically using a purposely developed Visual Basic for 
Application [30] subroutine that also saves in a selected folder each 
image. This routine uses the bridges listed in the database and assigns 
the bridge ID as picture filename.

The routine was exectuted for the sample of 1,888 bridges in the 
Basilicata region on a simple laptop equipped with an Intel(R) Core(TM) 
provided with 16.0 GB RAM through to a 30 Mbps wireless internet 
connection. The extraction of all images (640 × 640 pixel resolution) 
required 9 min (i.e., 0.286 s/image). Therefore, the procedure is rather 
efficient, also considering that more powerful computers could be 
adopted. Out of the 1,888 images, 119 (6.3 %) contain no information 
(Table 2) since no Street View imagery is available in the selected 
geographic location. The reason why this happens is that bridge 
beginning coordinates provided to OSM by road users does not neces
sarly correspond to a valid Google Street View location or the road is a 
rural one on which no image is available.

As can be seen from Table 2, most null images are related to minor 
road infrastructures and therefore a manual correction of bridge 

Fig. 7. Example of heading angle calculation (Map adapted from Goo
gle Mymaps).

Fig. 8. Images extracted from Google Street View (the file name corresponds to the bridge ID).
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coordinates to recover the images would seem to be not so important for 
the scope of this study, also considering that for some of them no im
agery is available at all. In fact, the following sections describe how the 
selected DL alghoritm has been trained and used to detect the guardrail 
type through the extracted images, only regarding main road in
frastructures, which are the most urgent in terms of traffic safety.

2.3. Typological classification of guardrails

According to [5], in case a bridge guardrail is replaced, a new H2, 
H3, or H4 type barrier must be installed depending on the type of road 
(motorways, extra-urban roads, and urban roads) and traffic volume 
(also as a percentage of commercial vehicles with mass higher than 3.5 
tons). H2, H3, and H4 barriers have increasing containing capacity and 
are usually installed on bridge edge curbs through chemical anchors. 
Fig. 9 compares old bridge barriers (c and d) and a new H3 one (a and b) 
(e.g., [31]).

As reported in [6], the main difference between old-type bridge 
barriers and new, code-coforming ones, is that the latter feature the 
presence of a 3-wave steel railing instead of a weaker 2-wave one 
mounted on non-conforming barriers. Moreover, the connecting ele
ments installed at the top of the device are more robust to permit a 
stronger collaboration between consecutive posts, in order to increase 
the device containing capacity.

Additional types of railings are reinforced concrete New Jersey (NJ) 
barriers (Fig. 10a), concrete (plain o reinforced) and masonry walls 
(Fig. 10b) and iron parapets (Fig. 10c). While NJ barriers could be 
cosidered code conforming due their high crash resistance, both walls 
and parapets cannot. In fact walls are not tested elements that may 

guaratee the needed resistance. Moreover, they often feature sharp 
edges and ends that can be dangerous in case of vehicle impact. On the 
other hand, iron parapets are too weak to offer some impact resistance. 
They easily fail even due to low energy impacts and cause the vehicle to 
fall down the bridge. Therefore detections are assumed as in Table 3, 
showing that when a non-conforming guardrail is correctly detected, it 
represents a true positive (TP) detection, assuming positive the cases 
that need barrier replacement. On the contrary, when a code- 
conforming guardrail is correctly detected, it is a true negative (TN) in 
the sense that it is properly identified the absence of any replacement 
need.

Therefore, when a non-conforming barrier is uncorreclty identified, 
it is a false positive (FP) while, when a code-conforming barrier is 

Table 2 
Distribution of nulle images by road type.

Road type Null images

cycleway 1
footway 7
path 11
primary 1
residential 1
road 2
secondary 2
service 9
tertiary 3
track 63
trunk_link 1
unclassified 18
Total 119

Fig. 9. Grafical comparison between old- and new-type bridge barriers: new type with 3-wave guardrail (a) sketch and (b) picture of an installation. Old-type barrier 
(c) installation and (d) sketch of the traditional 2-wave guardrail.

Fig. 10. Additional barrier types: (a) Concrete NJ, (b) masonry or concrete wall 
and (c) parapet.

Table 3 
Guardrail classes and detection assumptions.

Barrier 
description

Abbreviation Code 
conforming

Detection 
assumption

Detection 
class

Older type 
metallic 
guardrail

2-w no TP 0

Triple wave 
H2, H3 or H4 
guardrail

3-w yes TN 1

Reinforce 
concrete NJ 
guardrail

NJ yes TN 2

Masonry or RC 
wall

Wall no TP 3

Iron parapet Parapet no TP 4
TP = true positive; TN = true negative
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wrongly identified, it is a false negative (FN). Table 3 also shows the 
detection class that is a more concise class representation during the 
annotation activities and output elaboration.

2.4. Image labelling and deep learning algorithm for safety barrier 
detection

Once the images are retrieved from the API, they are processed using 
the YOLOv8 deep learning algorithm [32]. The YOLO (You Only Look 
Once) algorithm is a real-time object detection model that frames 
detection as a single regression problem. Unlike traditional methods that 
apply region proposal and classification in multiple stages, YOLO pro
cesses the entire image in just one step. It subdivides the image into a 
grid and, for each cell, simultaneously predicts bounding boxes and class 
probabilities. This unified architecture allows for extremely fast and 
accurate detection, making it particularly suitable for large-scale ap
plications such as infrastructure monitoring. This algorithm is trained to 
detect and classify various types of safety barriers, such as guardrails and 
concrete barriers. The goal is to identify whether the barriers are 
compliant with current safety standards or if they need to be replaced. It 
is worth noting that the identification of any damage occurred to the 
barrier is out of the scope of this study.

By analysing the images, the system must automatically assess the 
barrier type permitting to identify those that are non-compliant, facili
tating the decision-making process for infrastructure maintenance.

This approach allows for efficient, large-scale monitoring of bridge 
safety in a certain region, reducing the need for manual inspections and 
enabling the use of automated tools for maintaining road safety 
standards.

In order to train the YOLOv8 model to specifically recognize 
guardrails with a relatively low effort, a first annotation task was 
deployed, selecting 101 images according to Table 4. In order to increase 
the number of images, two types of data augmentation were made: (i) 
±15 % exposure variation and (ii) ±2.5 % blur. These types of aug
mentations are able to provide the model the ability of making pre
dictions based on varying brightness conditions and also with respect to 
low quality images having some blurry regions. Therefore, Table 4 re
ports the total number of occurrences for each class.

It must be noted that NJ was very rare in the dataset available, 
therefore training on that class is, as expected, unsuccessful. This pre
vents the effective prediction of NJ class in the collected images. Some 
examples of image annotation are reported in Fig. 11. As can be noted, 
annotation was not made through rectangles including the wanted ele
ments. In fact, polygons were used to better highlight the distinctive 
portions of the barrier. Fig. 11a and b show polygons including the 2-w 
and 3-w guardrail tapes since the goal is to detect the main element that 
characterizes the barrier. There are many types of 2-w and 3-w guard
rails. It is not interesting to establish which type of 2-w or 3-w barrier is 
installed, but if the barrier features a 2-w or a 3-w rail, since this is 
paramount to know whether it is code conforming or not. Using this 
approach, also the background disturbance is significantly reduced.

2.5. Integrating open-source tools and deep learning algorithms

This methodology integrates OpenStreetMap (OSM) queries, Google 
Street View (GSV) image retrieval, and YOLOv8 classification into a 

cohesive workflow designed for efficient safety barrier assessments on 
road bridges. The individual steps detailed previously, were already 
utilized singularly in previous studies [10,23,27] although their com
bined use is a novelty and represents a significant advancement of this 
study.

The integrated dataflow from bridge localization to guardrail type 
detection was automated by means of Visual Basic for Application (VBA) 
routines (Macros) integrated in an Excel workbook.

Referring to Fig. 12, in Worksheet 1, the process begins with Macro 1, 
where bridges are extracted from OpenStreetMap (OSM) using a query 
via the Overpass API. This query identifies features tagged as "bridge
=yes" within a specified geographic bounding box, retrieving relevant 
data in CSV format. Macro 2 processes the extracted data by importing 
the CSV file into the workbook, assigning unique identifiers to each 
bridge, and calculating their lengths based on geographic coordinates. 
The Atan2 function is used to determine heading values, which are then 
included in Google API requests. These requests fetch Google Street 
View images for each bridge, which are stored in a specific folder. Macro 
3 employs the YOLOv8 model to infer objects within the saved images. 
The results include labels, bounding boxes, and confidence scores, which 
are saved in a text format. Macro 4 imports these inference data labels 
into Worksheet 2, organizing them into columns that feature bridge IDs, 
class names, and confidence values.

Worksheet 2 focuses on class predictions and uses Macro 5 for 
analysis. This macro sets up a pivot table to structure the prediction data 
and applies filters to identify bridges that need guardrail replacement. 
The filtered data is then exported to Google My Maps to visualize the 
geographical locations of the affected bridges (Fig. 3f).

In Worksheet 3, Macro 6 handles cost computations. It calculates the 
total bridge lengths requiring guardrail replacement and estimates the 
associated costs. Finally, bridges are prioritized for replacement based 
on their road type and length, ensuring an optimized resource alloca
tion. This workflow integrates OSM, Google APIs, and the YOLOv8 
model to streamline the evaluation and prioritization of bridge safety 
interventions.

This streamlined framework represents a key innovation, automating 
the process and enabling even non-technical users to leverage advanced 
tools effectively.

3. Analysis of results

The trained YOLOv8 algorithm was applied to a subset of 776 bridges 
(each one corresponding to a single image) belonging exclusively to the 
major infrastructures in Basilicata region. The application process is 
remarkably fast, requiring only a few minutes to process the entire 
dataset.

The predictions were evaluated using a test set of 194 images, cor
responding to 25 % of all the images considered. For each image, the 
algorithm provided one or more object classes along with their respec
tive confidence scores. The final class assigned to each image was the 
one with the highest confidence. The comparison with the annotations 
of the test set images permitted to obtain the real guardrail type distri
bution over the test set, as reported in Fig. 13.

As expected for major road infrastructures, the presence of Wall and 
Parapets guardrails is low, being 3.1 % and 1.0 %, respectively. While 
the majority of barrier are code conforming 3-w guardrail, a significant 
share (46.4 %) is represented by 2-w outdated barriers. Some examples 
of guardrail detections are shown in Fig. 14.

In order to evaluate the detection capacity of the trained algorithm, 
one must consider that the Intersection over Union (IoU) metric is 
commonly used to assess the degree of overlap between predicted 
bounding boxes and the ground truth bounding boxes. IoU is calculated 
as the ratio of the intersection area to the union area of the two boxes, 
and it is critical for determining whether a predicted box is accurate. 
However, in this specific problem, the focus is just on classification 
rather than precise localization of objects. The objective is to identify the 

Table 4 
Count of annotated images.

Class name Count ±15 % exposure ±2.5 pixels blur Total

2-w 71 71 71 213
3-w 36 36 36 108
NJ 3 3 3 9
Wall 32 32 32 96
Parapet 22 22 22 66
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Fig. 11. Examples of image annotations: (a) 2-w, (b) 3-w, (c) NJ, (d) Wall, (e) Parapet.

Fig. 12. Workflow of the integrated bridge guardrail assessment procedure.
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correct class associated with each image, regardless of the exact position 
of the bounding boxes. Therefore, IoU is not relevant in this context, as 
the evaluation does not depend on spatial accuracy but rather on the 
model’s ability to assign the correct class to each instance.

Therefore, the used metrics were Accuracy, Recall (R), Precision (P), 
and F1-Score defined as follows: 

Accuracy =
TP + TN

TP + FP + TN + FN
(1) 

R =
TP

TP + FN
(2) 

P =
TP

TP + FP
(3) 

F1.score = 2⋅
P⋅R

P + R
(4) 

Where: 

• TP: True Positives
• FP: False Positives
• TN: True Negatives
• FN: False Negatives

In this application, a False Negative represents a failure to recognize 
a non-compliant barrier, which could lead to lack of action on a possibly 
vulnerable structure. Such oversights could have serious safety impli
cations, as these barriers may not meet the necessary standards for 
protecting road users.

While Precision measures how many of the predicted non-compliant 
barriers are actually correct, it is less critical in this case because False 
Positives (FP) simply result in additional checks on barriers that are 
ultimately compliant, which is less dangerous than missing a non- 
compliant one.

Therefore, prioritizing Recall aligns with the safety-first approach 
required in this domain, ensuring a thorough identification of non- 
compliant barriers to mitigate potential risks.

To better understand the performance of the algorithm, the test set 
was divided based on confidence thresholds. Table 5 summarizes Recall 
and False Positive Rate (FPR) across different thresholds:

Summarizing the previous metrics, the following results are 
obtained: 

• Accuracy: 0.912
• Recall (R): 0.928
• Precision (P): 0.900

Fig. 13. Distribution of guardrail types over the test set.

Fig. 14. Examples of detections of (a) 3-w, (b) 2-w, (c) Parapet and (d) Walls.
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• F1-Score: 0.914

These values indicate that the algorithm performs well in detecting 
relevant objects while maintaining a high level of Precision. Accuracy 
measures the proportion of correct predictions made out of all pre
dictions and provides an indication of how often the model is correct in 
its classifications. The high value achieved demonstrates the model’s 
effectiveness. The high F1-Score highlights a good balance between 
Recall and Precision.

Data in Table 5 shows that as the confidence threshold increases 
Recall improves, reaching a maximum of 0.93 at a confidence of 1.0. 
This indicates that higher confidence thresholds lead to fewer False 
Negatives, as expected; FPR decreases significantly, reaching 0.10 at the 
highest confidence threshold. This highlights the algorithm’s ability to 
reduce False Positives at higher confidence levels.

The relationship between Recall (and FPR) and confidence thresh
olds is depicted in the graph of Fig. 15, demonstrating the algorithm’s 
performance at varying levels of confidence. Moreover, the Recall local 
minimum value at Confidence 0.6 depends on the sharp increase of FN 
as the Confidence passes from 0.5 to 0.6.

This graph confirms the expected trend: as confidence increases, the 
TPR improves, and the FPR drops. This behaviour aligns with the goal of 
optimizing both Recall and Precision at higher confidence levels. The 
results further validate the robustness of the trained YOLOv8 algorithm 
for automatic classification tasks on major infrastructure datasets.

In order to understand the model’s detection capacity about single 
classes, the normalized confusion matrix is depicted in Fig. 16. This 
latter reveals the performance of the classification model across five 
safety barrier classes: 2-w, 3-w, NJ, Parapet, and Wall. The results show 
that the model provides high classification accuracy for the 2-w and 3-w 
classes, correctly identifying 92 % of the instances. However, there is 
some overlap between these two classes, with 7 % of 2-w barriers mis
classified as 3-w and vice versa. In fact, these classes share similar fea
tures, related to the 2-w steel tape that in some lighting condition or in 

presence of vegetation may potentially be confused with 3-w and vice 
versa. For the NJ class, the performance is remarkably lower, with an 
accuracy of only 33 %. As expected, NJ misclassifications are with Wall 
classes but also regarding 3-w, indicating that the distinguishing fea
tures of NJ barriers are not well captured by the model. However, this 
does not impact so much the overall procedure since very fewer NJ cases 
are present in the database.

On the contrary, the model performs perfectly for the Parapet and 
Wall classes, achieving 100 % accuracy. These results indicate that these 
classes possess evident features the model is able to learn effectively, 
leading to no observed misclassifications.

Given the mentioned misclassification problems, future improve
ments could include enlarging the training set, applying more diverse 
augmentation, and incorporating additional features like texture or 
background context. Rare classes like NJ barriers are more difficult to 
detect due to the small sample size, and this will also be acknowledged 
with possible solutions such as targeted data collection or synthetic data 
generation.

4. Cost analysis and prioritization

Once the trained deep learning model’s ability has been checked 
through the previously mentioned metrics, the result in terms of 
guardrail classification can be assumed reliable and helpful in a regional 
cost prediction about the replacement of safety barrier along the 
selected major road infrastructures. The previous analysis show that 
Wall- and Parapet-type barriers are negligible over these infrastructures, 
and therefore in the following cost predictions, only 2-w guardrails will 
be considered.

It must be noted that, the cost prediction is based on [6], in which 
parametric costs were reported based on the price list of ANAS [33], 
which is the major road management body in Italy. The technical so
lutions are also based on the design manual issued by the same agency 
[34] and foresee the guardrail replacement along with the strengthening 
of the cantilever part of the slab [6]. As can be seen from Fig. 17, the unit 
length cost varies between 744 €/m and 1042 €/m, according to the 
width of the bridge slab to be strengthened. It is also assumed that in 
place of the 2-w guardrail a H4 (the highest containment class) 
code-conforming guardrail is installed.

Adopting a mean cost value equal to C = 893 €/m and considering 
that each bridge equipped with non-compliant guardrails has two sides 
needing replacement, the total intervention cost can be easily computed.

As presented in Table 6, the total cost of intervention to replace 2-w 
barriers overcomes 67 million Euro. Considering that the used price list 

Table 5 
Detection results over the test set.

Confidence TP FP TN FN Recall FPR

0.4 7 4 4 1 0.875 0.500
0.5 15 5 6 2 0.882 0.455
0.6 24 5 12 6 0.800 0.294
0.7 35 7 18 6 0.854 0.280
0.8 49 9 24 6 0.891 0.273
0.9 63 10 42 7 0.900 0.192
1 90 10 87 7 0.928 0.103

Fig. 15. Recall and FPR as a function of confidence.

Fig. 16. Results of YOLOv8 in terms of normalized confusion matrix.
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dates to year 2022, the actualized cost in 2025 would correspond to 71.5 
million Euro.

Besides the cost prediction to make all bridge barriers code- 
compliant, a prioritization scheme is needed to obtain an optimal 
resource allocation. The scheme used in this study is based on the fact 
that major road infrastructures are more prone to accidents due to 
higher speed, larger traffic volume and higher percentage of commercial 
vehicles, which are more likely to cause the guardrail collapse in case of 
an impact [6]. Therefore, higher priority is given to bridges on these 
road infrastructures according to the order of Table 1. When dealing 
with bridges on the same road type, the priority is assigned based on 
length values, in the sense that longer bridges must have a higher pri
ority. In fact, the probability that an accident happens increases with the 
bridge length. This approach, although reasonable, lacks data on real 
traffic volumes. In fact, it is assumed that infrastructures within the same 
road type have equal traffic volumes, and this is generally false, 
although in some cases differences may be negligible. The resulting list 
of priorities is not reported due to discretion, even though the bridges 
needing barrier replacement are visually located in Fig. 3(f).

5. Discussion

The proposed methodology for automating the classification of 
safety barriers on bridges represents a significant advancement in the 
management of critical infrastructure. This approach, utilizing open- 
source data such as OpenStreetMap (OSM) and the Google Street View 
API alongside deep learning algorithms like YOLOv8, addresses multiple 
challenges faced by local authorities responsible for road safety in an 
integrated manner. Strengths and limitations of the proposed method
ology are summarized in the flowchart of Fig. 18.

One of the key advantages of the methodology is its use of publicly 
available data and scalable computational tools. The use of OSM for 
extracting bridge coordinates and Google Street View for image retrieval 
eliminates the need for expensive and time-consuming data acquisition 
technologies such as laser scanning or drone surveys. This makes the 
approach highly cost-effective and accessible to local road authorities 

with limited budgets and technical expertise. The capability to process 
large datasets in just a few minutes further evidences its practical value, 
allowing for rapid assessments of large road networks. However, for 
some bridges, the starting coordinates could be imprecise and this may 
impact on the Street View images that may refer to a guardrail on a road 
portion before the bridge.

The use of Google Street view API allows to have open access to 
valuable images, practically worldwide, and big set of image can be 
retrived rapidly. In most cases these images are up to date and present 
the actual condition of bridge barriers.

On the other hand, when the bridge at hand is an overpass, some
times the provided image is related to the road below, that is not useful 
for the scope. Moreover, as seen before, bridges on minor roads could be 
not covered by this service.

To overcome these issues, when GSV images are not available, the 
only solution is to carry out a manual inspection to collect the necessary 
data. Conversely, the issue of inaccurate bridge coordinates can be 
identified by examining the initial GSV image: if the heading angle is 
incorrect, the guardrails may not be visible. Bridges affected by this 
problem can be easily and automatically identified, as the YOLO algo
rithm produces no detections—an unlikely outcome, since every bridge 
should feature either a compliant or non-compliant barrier. This specific 
issue can be resolved by manually retrieving the correct image from GSV 
using a manually adjusted heading angle. Although these steps require 
some manual intervention, addressing such issues would significantly 
enhance the overall applicability of the proposed methodology.

Finally, YOLO object detection algorithm is known for his speed of 
elaboration, which does not even need particularly powerful computers. 
The trained model has a general validity for a given country. For 
example in Italy guardrail type are quite uniform alongside the different 
regions, and the resulting model can be used also for regions different 
from that one the model is trained on. While the whole method is 
technically applicable worldwide (as OSM and Google Street View are 
available in many regions), its effectiveness in countries other than Italy 
depends on the need to train the YOLO algorithm with respect to local 
barrier types, in order to be adapted for its intended use.

Overall, the major stength of the methodology is represented by the 
possibility to easily integrate different steps into a simple software tool 
and to operate remotely, greatly reducing inspections, personnel and 
expensive devices requirements.

The application of the methodology to a subset of 776 bridges in 
Basilicata region highlights its practical utility. By focusing on major 

Fig. 17. Guardrail replacement cost (Adapted from [6]).

Table 6 
Summary of cost calculations.

Data description Amount Units

Number of bridges on major infrastructures 776 –
Number of bridges equipped with 3-w guardrails 454 –
Number of bridges equipped Parapets, Walls and NJ 29 –
Number of bridges equipped with 2-w guardrails 293 –
Length of bridges equipped with 2-w guardrails 37.54 km
Length of guardrails replacement 75.09 km
Mean cost of intervention C 893 €/m
Total cost of intervention 67.05 M€

Fig. 18. Strengths and limitations of the proposed methodology.
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road infrastructures, where traffic volumes and safety risks are highest, 
the study effectively identifies the structures needing intervention. The 
analysis of a test set comprising 194 images demonstrated the robustness 
of the YOLOv8 algorithm, which achieved Accuracy of 0.912, Recall of 
0.928, Precision equal to 0.900 and F1-Score 0.914. These metrics un
derline the algorithm’s ability to accurately classify guardrails, partic
ularly in detecting non-compliant ones.

The results also show the importance of focusing on Recall in this 
context. A high Recall values ensures that the majority of non-compliant 
guardrails are identified, thus minimizing the risk of leaving unsafe 
structures undetected. False negatives, in this context, could lead to 
serious safety risks and potentially catastrophic consequences. Event 
tough Precision is less critical, the high value achieved in the study 
evidences that the algorithm results a low rate of false positives, 
reducing unnecessary inspections or interventions. However, a certain 
level of false positives is acceptable in the context of this study, as the 
primary objective is not to achieve perfect classification on every single 
bridge, but rather to provide a reliable estimate of the barriers that may 
require replacement for prioritisation purposes.

The analysis of results based on confidence thresholds provides 
deeper insights into the algorithm’s performance. As the confidence 
threshold increases, the False Positive Rate (FPR) decreases to 0.10. This 
trend is in line with the expectation that higher confidence thresholds 
yield more reliable classifications, reducing the probability of false 
negatives.

The cost analysis presented in the study provides a valuable 
perspective on the economic implications of replacing non-compliant 
barriers. The estimated cost of €71.5 million for replacing 2-wave bar
riers with code-compliant 3-wave barriers underscores the financial 
burden of ensuring passive road safety on bridges. The proposed prior
itization scheme puts in evidence the importance of Road Type data and 
bridge length although needing accurate data on traffic volumes. 
Overall, the cost computation highlights the necessity of accurate and 
efficient classification methods to prioritize interventions and allocate 
resources effectively.

Referring to the 776 bridges inferred by the procudere, acting thor
ugh tradidional bridge visual inspections (with lane closures) would 
take 194 days (4 bridges per day, see Section 2) and 10 days using high- 
resolution cameras mounted on a vehicle with subsequent data analysis. 
Using the proposed methodology only requires few hours since it could 
be based on the already trained model (the one proposed here). 
Furthermore, the proposed methodology provides fully connection of 
visual (GSV) and non visual data (bridge data) with geographic loca
tions, permitting the full exploitation of open source tools. The time and 
cost savings obtained through this approach are not quantified here but 
represent an important added value for a timely prioritization of 
maintenance interventions.

6. Conclusions

The proposed methodology provides an innovative approach to 
infrastructure management and demonstrates the feasibility of large- 
scale assessments of bridge safety barriers along with the following 
main strengths: 

• It minimizes the manual effort allowing to operate with a fully 
automated and remote approach, which significantly reduces the 
time and cost associated with manual inspections, allowing for faster 
and more comprehensive assessments of road infrastructure.

• The proposed framework can be applied to the entire Italian country 
and also exported to different countries with the only need to train 
the YOLO model based on local types of guardrails, considering that 
OSM and Street View data are available almost globally.

• The integrated data retriving and analysis approach does not require 
sophiticate software tools nor powerful computer infrastructure, 
being based on simple VBA routines concatenated each other.

The methodology applied to 776 bridges in Basilicata region showed 
its practical utility in detecting and classifying safety barriers. The re
sults from a test on 194 images revealed a high Recall equal to 0.928, 
ensuring that the majority of unsafe barriers are identified, addressing a 
critical priority in road safety.

Therefore, the methodology enables critical entities (road manage
ment bodies) to prioritize interventions on high-risk structures, opti
mizing resource allocation and increasing the asset management 
sustainability.

A possible future development could be represented by the possi
bility to assess eventual guardrail physical damage or deterioration, 
which are critical factors in assessing barrier safety, even for code con
formin ones. Incorporating damage detection capabilities into the 
framework could further enhance its utility. Such a damage detection 
YOLO model would be separate from the classification model, and could 
be specific for each barrier type. This would require each damage 
detection model to be applied after the inference, based on the classi
fication result.
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