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ARTICLE INFO ABSTRACT

Keywords: Guardrails installed on road bridges are essential to the safety of vehicles and road users. However, infrastructure
Bridge ) managers often lack accurate and up-to-date inventories of the safety barriers on their bridges. Moreover, the
Guardrail limited availability of financial resources, combined with the lack of adequately trained personnel, makes it
Infrastructure management oe L. . - L . .
difficult for these entities to effectively assess the condition of such critical infrastructure, even though, in most
Automated assessment . . . . . .
Deep learning cases, it is only necessary to recognize the barrier code compliance, which could be done even by less trained
Open-source data personnel. This paper proposes an integrated methodology to automate the assessment of road guardrails
Road safety installed on bridges using open-source data and deep learning (DL) algorithms. Besides the use of the consoli-
dated YOLO (You Only Look Once) object detection algorithm to classify the safety barriers to establish whether
they match the current standards, the process innovatively involves the extraction of bridge information from
OpenStreetMap (OSM) to construct a database of existing bridges. This latter step is integrated with Google Street
View API, for the extraction of images of each bridge’s safety barriers to be analysed by YOLO. The synergic
concatenation of these three steps (OSM, Google Street View, YOLO) into a unique software tool, provides road
managers with a cost-effective and efficient tool to remotely survey the guardrails installed on their bridges,
permitting to prioritize maintenance and upgrading interventions. The methodology not only facilitates the task
of infrastructure monitoring but also helps ensure the safety of road users by timely identifying non-compliant
safety barriers. Finally, the developed procedure allowed to identify non-conforming guardrails on a subset of

bridges located in a southern Italy region permitting to compute the intervention cost for their replacement.

1. Introduction and motivation

The management and maintenance of bridge infrastructure is a key
priority for road safety, as bridges are critical components in road net-
works, especially due to their exposure to various mechanical and
environmental stresses over time [1]. While a relevant part of the
research is dedicated to the bridge structural components’ assessment (i.
e. what is below the road pavement, [2]), little evidence of research can
be found about guardrails (aka safety barriers, safety railings or restraint
systems) that are devoted to preventing vehicles to fall from bridges,
causing frequently fatal consequences (what is above the road) [3]. The
degradation of these bridge components is a significant concern [4], as
these barriers are designed to prevent vehicles from leaving the roadway
and causing fatal accidents in case of a collision or other hazardous
events as stated by standards and codes [5]. In fact, over the past ten
years, the two main accidents occurred in Italy that cause more than
sixty fatalities, could have been mitigated by the presence of up-to-date
barriers [6]. Therefore, ensuring the structural integrity and regulatory
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compliance of these barriers is essential for the safety of road users [5].

Following recent disasters such as the Morandi bridge collapse [7]
new guidelines for bridge management were issued in Italy [8,9].
However, local authorities responsible for maintaining such infrastruc-
ture, including municipalities and provinces, often struggle with several
challenges. One major issue is the lack of detailed, up-to-date in-
ventories of the bridges under their jurisdiction [10]. In many cases,
infrastructure databases are either incomplete or totally absent, leading
to gaps in knowledge about the condition and safety features of bridges,
preventing the setting up of Bridge Management Systems (BMS) [11].
This is particularly problematic for older bridges, where safety barriers
may not meet current regulatory standards [12].

The limitations faced by local road authorities extend beyond data
availability. Many of these agencies operate with limited human and
financial resources [13], making it difficult to carry out regular in-
spections and assessments of bridge infrastructure, even for the only
code-compliance classification. The personnel responsible for these
tasks is often overwhelmed by serval activities and is unable to assess
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bridge barriers. As a result, non-compliant barriers may remain unno-
ticed for years, while limited resources are misallocated to less critical
infrastructure elements.

A further complicating factor is the huge volume of infrastructure
that needs to be managed. In many provinces and municipalities, road
authorities are responsible for hundreds of kilometers of roads and
hundreds of bridges, often with minimal staffing [14]. Out of the total
850,000 km of roads in Italy (Fig. 1), only 4 % are managed by national
agencies (state roads) or concessionaries (motorways). Therefore, mu-
nicipalities and provinces are responsible for 816,000 km of roads, with
the consequent amount of safety barriers on bridges and road edges.

Among the estimated 120,000 bridges in Italy [10], about 30,000 are
on state roads or motorways and 90,000 are on local roads. Therefore,
conducting manual inspections of each bridge is a time-consuming and
resource-intensive process, particularly for remote or difficult-to-access
structures. This leads to significant delays in identifying and addressing
non-compliant safety barriers, creating potential hazards for road users
[15]. Lastly, it must be noted that even when lacking guardrails are
identified, their replacement often requires strengthening interventions
on the supporting members such as the cantilever part of the bridge slab
and the edge curb [6], increasing the fund allocation needed.

In response to these challenges, there is a growing need for auto-
mated and integrated systems that can streamline the process of
assessing the condition of bridge safety barriers [11]. The possibility of
automatically detect guardrail types and condition to speed-up the
maintenance processes would solve this problem. As an example, in [16]
an automated approach was proposed to automatically detect road
distresses and attribute a pavement rating to prioritize interventions. In
[17,18] procedures were set up to detect safety barriers, not only along
bridges, using laser scanner technologies and other image acquisition
devices and vision data fusion techniques to merge information
collected through different means. More recently Gao et al. [19] pro-
posed the use of Mobile Laser Scanning (MLS) systems to obtain highly
dense 3D point clouds that enable the acquisition of accurate traffic
facilities and therefore guardrail types and conditions. These methods,
however, require highly specialized personnel, the management of large
amount of data and are time-consuming since it is requested that a
vehicle travels the road to collect the needed information. Moreover,
expensive devices for image acquisition are often necessary.

Given the mentioned constraints, this paper presents a comprehen-
sive methodology for constructing a bridge database using Open-
StreetMap, integrating visual data from Google Street View, and
applying deep learning algorithms to assess the compliance of bridge
safety barriers. In particular, the proposed approach is devoted to the
barrier classification to assess its compliance with the current road
safety standards, without the purpose of replacing the work of special-
ized engineering personnel able to assess the functionality, integrity and
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Fig. 1. Shares of roads in Italy by management body.
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effectiveness of any roadside installed barrier.

In fact, the system architecture is organized through Visual Basic for
Applications routines in order to manage the process flow through a
single digital tool, leading only to the barrier classification. The
following sections provide a detailed description of each step in the
process and discuss the potential benefits and limitations of this
approach.

2. Methodology

Current methodologies for guardrail assessment, are based on visual
inspections made by professionals travelling to specified bridge loca-
tions to acquire guardrail details such as the type, eventual damage,
information about their connection with the bridge supporting ele-
ments. This requires traffic limitation consisting of at least one lane
closure for each bridge side. This manual approach requires a minimum
4-person team out of which, 3 are related to the lane closure and safety
signals installation, and one person (an engineer) dedicated to barrier
survey. Such a methodological framework is extremely slow since one
survey team can inspect maximum three to four bridges per day. The
main source of slowness is represented by the need of installation and
uninstallation of the safety apparatus for lane closure. Alternatively, the
simple passage on the bridge of a vehicle equipped with a high-
resolution acquisition device (e.g., LIDAR) could avoid the need for
lane closures, thus permitting a higher productivity, even though forcing
to collect a large amount of data (point clouds) to be interpreted through
labour-intensive desk work. In this way, about 20 bridges [17] per day
could be inspected overall.

When maintenance issues are mainly related to guardrail type
detection, in order to make a decision on the need to replace possibly
outdated barriers, in theory, design documents could provide informa-
tion on the originally installed guardrails. However, many bridge-
s—especially on local roads—lack updated documentation (the design
documents are often not available), and over time barriers may have
been replaced, removed, or degraded without proper recordkeeping.
Therefore, relying solely on original documents may not reflect the
current state of the infrastructure. In this case, even a remotely acquired
image could be enough to greatly speed-up the process of more than one
order of magnitude. In this sense, the present paper proposes a pro-
cedure to reduce the need for both expensive acquisition devices and
time-consuming activities, exploiting already existing data that could be
used also for remote detections. In fact, by leveraging open-source tools
and advanced data analysis techniques, local authorities can improve
the efficiency of their infrastructure management processes while
reducing reliance on manual inspections [20]. Open-source geographic
data platforms, such as OpenStreetMap (OSM), are particularly prom-
ising for this purpose, as they offer detailed, accurate, and freely
accessible information about bridges and road networks across almost
all the world [21].

OSM databases can serve as the foundation for further analysis,
enabling road authorities to monitor and manage their bridge assets
more effectively [22]. These databases can be further extended by
manually integrating information retained by road managers in a way to
give more consistency and completeness to data.

The next step in automating the assessment process involves the use
of visual data to evaluate the condition of bridge safety barriers. Google
Street View provides a valuable source of panoramic images of road
networks and surrounding infrastructure, including bridges [23]. By
using the geographic coordinates extracted from OSM, images of the
safety barriers on each bridge can be automatically retrieved through
the Google Street View API [24]. These images can then be analysed to
determine whether the barriers meet current safety standards [5]. The
fact that Google Street View could introduces limitations, as incomplete
or outdated imagery could significantly impact the assessment accuracy,
is not a significant concern in most cases. In fact, imagery is available
with a yearly cadence, in some cases even more frequently, with images
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taken more than once a year (Fig. 2).

Given the volume of data involved, manual analysis of the images is
impractical. Instead, deep learning algorithms, such as You Only Look
Once (YOLO), can be employed to automate the object detection pro-
cess. YOLO is an advanced object detection algorithm that has been
widely used for infrastructure monitoring and safety assessments [25].
This algorithm has already been successfully used in infrastructure
monitoring activities like in [26] in which Yolo was used to detect bridge
elastomeric bearing damage, helping in automatically recognizing
cracks, shearing and detaching issues in devices.

By training a YOLO model to recognize different types of safety
barriers, it is possible to automatically classify the barriers in the Street
View images as either compliant or non-compliant with regulatory
standards. This automated classification allows local authorities to
quickly identify high-risk bridges and prioritize their maintenance ef-
forts, identifying the bridges in need of safety barrier replacement
(Fig. 3).

The use of these open-source tools and deep learning techniques
(Option 2 in Fig. 3) offers several advantages for local road managers.
First, it significantly reduces the time and cost associated with manual
inspections (Option 1 in Fig. 3), making it feasible to conduct large-scale
assessments of bridge infrastructure [27]. Furthermore, it improves the
accuracy and consistency of barrier assessments, minimizing the po-
tential for human error [28]. Finally, it enables local authorities to focus
their limited resources on the most critical infrastructure needs,
ensuring that non-compliant safety barriers are addressed in a timely
manner. It must also be considered that the methodology is mostly
automated. Human intervention is required only in two steps such as the
initial model training and annotation (done once, the model here pre-
sented can be used) and potential manual correction of missing co-
ordinates for bridges in rural areas. In summary, while each individual
technology (OSM, GSV, YOLO) is well-established, the novelty of this
work lies in their automated integration into a single, low-cost, scalable
framework that allows for regional assessment and prioritization of
guardrail replacement. This integration is achieved through custom VBA
routines that link geospatial data, image retrieval, and deep learning
inference in a fully operational tool usable even by non-technical staff.
In the following sections, each of the steps involved in the option 2 are
described in detail.

2.1. Exploiting open data for bridge dataset development

OpenStreetMap (OSM) is a crowd-sourced geographic database that
provides real-time, up-to-date information on various types of infra-
structure, including bridges, roads, and pathways. By extracting the
geographic coordinates of bridges from OSM, it is possible to construct
an infrastructure database that includes critical attributes such as bridge
type, location, and connected roadways [21].

To extract bridges from OpenStreetMap, the process begins by
defining the geographic area of interest, which can be done using

Fig. 2. Google Street View images available at given timeframes for a specific
bridge on a highway.
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latitude and longitude coordinates to specify a region. Then, a query is
sent to OSM using a tool like the Overpass API to retrieve data tagged as
bridges. Bridges in OSM are identified by the tag “bridge=yes".

Once the query is executed, the output data typically includes
additional information such as the type of road (e.g., motorway, trunk,
residential) and other relevant tags, like the structure type or the ma-
terial of the bridge. This information is extracted and organized into a
dataset for further analysis, which can include details such as the
bridge’s location, length, and associated road network.

The resulting data can be saved in various formats, such as JSON or
XML, and further processed for tasks like generating maps or integrating
the information into a larger database for infrastructure management. In
this case, the database has been treated in Excel environment.

An important piece of information is related to the bridge location.
OSM typically provides start and end coordinates, even though, for
longer bridges, it also provides a series of intermediate coordinates
describing the bridge path. In fact, for bridges longer than approxi-
mately 40 m, OSM coordinates every 25 m of length are provided. This
allows to estimate the bridge length as well as the heading direction
along the bridge development.

One of the main tags in OSM is related to Road type as shown in
Table 1 [29]. They have been grouped in major and minor road in-
frastructures. This is an essential distinction since in minor road in-
frastructures, safety barriers are often absent due to low traffic volume
and the poor pavement installed.

Therefore, the attention will be focused on major road infrastructure,
where it is essential guaranteeing the effectiveness of guardrails on
bridges.

2.1.1. The Basilicata region bridge dataset

In this study, the proposed methodology was applied to a sample of
bridges located in the Basilicata region, Italy. The Basilicata region
presents a varied and complex road network, characterized by a com-
bination of national highways, regional roads, and local municipal
roads. The bridge dataset for this region includes approximately 2,000
bridges (Fig. 4), which serve as a representative sample for testing the
automated barrier assessment methodology described earlier. The con-
struction of this dataset was made possible by exploiting OpenStreetMap
(OSM) data and cross-referencing it with official road infrastructure
databases.

The dataset contains a variety of information about each bridge,
including its geographical location, bridge length, type of road it serves.
In the following, it is provided an overview of the distribution of bridges
based on their road type and length, highlighting the main character-
istics of the dataset.

2.1.2. Bridge distribution by road type

The first factor considered in the analysis is the distribution of
bridges according to the type of road they are located on. Fig. 5 shows
the distribution of bridge development (in km) across different road
types, alongside the percentage of interchanges associated with each
road type.

Motorways and trunks (roads that differ from other road types pri-
marily in terms of design, access control, and function within a road
network) show a significant portion of bridge development, with
approximately 27 to 28 km of bridges respectively. This reflects their
importance in supporting heavy traffic volumes and long-distance
travel. State Roads exhibit the highest development of bridges,
exceeding 60 km in total. This highlights the strategic role these roads
play in connecting various towns and cities across Basilicata. Provincial
roads follow state roads in terms of bridge length, with roughly 40 km of
bridge infrastructure. They serve as essential connectors between
smaller municipalities and rural areas. Lastly, municipal roads account
for a smaller but still significant portion of bridge development, with
about 20 km of length. The remaining bridges are distributed across
other road categories, with appreciable lengths observed, summing up
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Fig. 3. Framework for remote automated bridge guardrails assessment.

Table 1
Road types classified in OSM datasets.
Group Road type Description
Major road motorway High-speed road, restricted access (e.g.,
infrastructures freeways)
trunk Major road connecting cities, fewer
access controls than motorways
primary Main roads linking towns and cities
secondary Roads connecting smaller towns and
villages
motorway_link  Short connector roads linking
motorways to other roads
trunk_link Short connectors linking trunk roads to
other roads
primary_link Connectors linking primary roads to
trunk roads or other roads
secondary_ link  Connectors linking secondary roads to
other roads
Minor road tertiary Roads serving local traffic between
infrastructures smaller settlements

tertiary_link
unclassified
residential
service
track
pedestrian
footway
cycleway
path

living_street

construction

Connectors linking tertiary roads to
other roads

Minor rural or local roads without a
specific classification

Roads within residential areas, slower
speeds

Access roads to services, parking, or
industrial areas

Unpaved roads, often used for
agriculture or forestry

Roads or streets designed for pedestrian
traffic

Paths dedicated to pedestrians

Paths dedicated to bicycles
General-purpose paths for non-
motorized traffic

Low-speed roads prioritizing
pedestrians and cyclists

Roads currently under construction

to >20 km. These are mainly rural roads.

The graph also illustrates the percentage bridges related to in-
terchanges (junctions) for each road type, which is, as expected, highest
on highways and progressively decreases on provincial and municipal
roads. This is indicative of the higher complexity of the road network
and traffic management on major infrastructures compared to smaller
roads.

2.1.3. Bridge length distribution

The second factor analysed is the distribution of bridge lengths
within the dataset. The bridge length can be calculated using the bridge
coordinates, by summing up the length of segments connecting the
points that describe the bridge path, from the start to the end point.

Fig. 6 presents the number of bridges categorized by their length and
the cumulative percentage of bridges across different length classes.
Most bridges (approximately 660 bridges) are relatively short, ranging
between 25 and 50 m in length. This is typical for smaller, rural bridges
or those crossing minor rivers or streams. Bridges measuring between 10
and 25 m also form a significant portion of the dataset, with 282 bridges
falling into this category. Bridges with lengths between 50 and 100 m
account for another significant subset, with 320 bridges in this range. As
the length increases, the number of bridges decreases. In fact, bridges in
the range 100 - 200 m are less common (171 bridges), while longer
bridges, such as those spanning 200 to 500 m, number around 103 and
132 respectively. The longest bridges in the dataset, with length be-
tween 500 m and 2500 m, are rare, with only a few structures over 1000
m in length.

The cumulative curve shows that 90 % of the bridges in the dataset
are <250 m long, while the remaining 10 % are spread across longer
length values.

This dataset, composed of bridges from the Basilicata region, serves
as a suitable case study for testing the automated system for recognizing
and classifying safety barriers. Most bridges are relatively short, yet
diverse in their structural characteristics and road types. This diversity
enables a thorough evaluation of the proposed methodology across a
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Fig. 4. Geographic locations of bridges included in the dataset.
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Fig. 6. Length distribution of bridges and viaducts.

wide range of bridge configurations, facilitating the identification of
potential non-compliance in safety barrier installations.

2.2. Automated extraction of bridge guardrails images

The process for extracting Street View images of bridges in the

Basilicata region begins with the identification of the geographic co-
ordinates (latitude and longitude) of each bridge, specifically the start
and end points. These coordinates are essential for obtaining images that
provide a clear view of the road and the guardrails installed on the
bridges. The images serve as input for a deep learning system that de-
tects the type of barriers and determines if they comply with current
safety regulations.

To capture the images, the Google Street View API is used [24]. This
API allows for image retrieval by making an HTTP request that includes
parameters such as location, heading, and pitch. The location parameter
is provided by the coordinates of the bridge’s starting point, while the
pitch is fixed at O degrees to ensure a horizontal view of the road. This
setting is devoted to obtaining a clear, side-on image of the barriers, not
an elevated or depressed angle.

The heading parameter, which determines the direction the camera
faces, is calculated based on the coordinates of the bridge’s start and end
points. The heading angle is computed using the following formula,
which calculates the angle relative to true North:

0 = atan2(sin(LON, — LON; )-cos(LAT,), cos(LAT;)-sin(LAT>)
— sin(LAT;)-cos(LAT,)-cos(LON; — LON; ))

Where:

atan2 is a mathematical function that computes the arc tangent of
two arguments, y and X, representing the projections on Cartesian plane
of the segment connecting points 1 and 2 (assuming that point 1 co-
incides with the origin, see Fig. 7). Unlike the standard arc tangent
function (atan), which only considers the ratio y/x, atan2 considers
both the numerator (y) and denominator (x) to determine the correct
angle, considering the quadrant of the point (x, y).

It returns the angle in radians, typically between —n and +n (or
—180° to +180°). This makes it especially useful for applications that
require precise direction calculations, such as in navigation, robotics,
and computer graphics. Thus, atan2 is a more robust version of the arc
tangent function that accurately calculates the angle by considering both
coordinates of the point and resolving the quadrant ambiguity (Fig. 7).

- LAT1LON; are the latitude and longitude of the start point (1),
- LAT;LON, are the latitude and longitude of the end point (2),
- 0 is the resulting heading angle.

Points (1) and (2) are usually the first and the second point provided
by OSM as bridge coordinates. As said, for short bridges, they coincide
with the start and end points.

The heading angle (0) ensures that the image is aligned with the
direction of the road, providing the optimal view for guardrail detection.
The HTTP request to the Google Street View API includes these
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parameters in the following format:
https://maps.googleapis.com/maps/api/streetview?
size=640x640&location=LAT,

LON&heading=HEADING&pitch=0&key=YOUR_API_KEY
Where:

- LAT, LON are the latitude and longitude coordinates,

- HEADING is the calculated angle 6,

- pitch=0 ensures a horizontal view,

- key=YOUR_API KEY is your Google API key (provided upon the
activating a Google Cloud account).

In case points (1) and (2) are not alinged along the same road border
the calculated heading angle could be not perfectly aligned with the
road direction, as can be seen for some of the road pictures in Fig. 8 (e.g.,
261, 274 etc....). However, also in this cases the resulting picture can be
utilized for the safety barrier recognition and no correction is needed.

The image extraction through the above-mentioned HTTP request is
made automatically using a purposely developed Visual Basic for
Application [30] subroutine that also saves in a selected folder each
image. This routine uses the bridges listed in the database and assigns
the bridge ID as picture filename.

The routine was exectuted for the sample of 1,888 bridges in the
Basilicata region on a simple laptop equipped with an Intel(R) Core(TM)
provided with 16.0 GB RAM through to a 30 Mbps wireless internet
connection. The extraction of all images (640 x 640 pixel resolution)
required 9 min (i.e., 0.286 s/image). Therefore, the procedure is rather
efficient, also considering that more powerful computers could be
adopted. Out of the 1,888 images, 119 (6.3 %) contain no information
(Table 2) since no Street View imagery is available in the selected
geographic location. The reason why this happens is that bridge
beginning coordinates provided to OSM by road users does not neces-
sarly correspond to a valid Google Street View location or the road is a
rural one on which no image is available.

As can be seen from Table 2, most null images are related to minor
road infrastructures and therefore a manual correction of bridge

273

274

Fig. 8. Images extracted from Google Street View (the file name corresponds to the bridge ID).
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Table 2
Distribution of nulle images by road type.

Road type Null images

cycleway
footway
path
primary
residential
road
secondary
service
tertiary
track

trunk link
unclassified
Total 119

D WONNRRF=N =
w —-

=
<]

coordinates to recover the images would seem to be not so important for
the scope of this study, also considering that for some of them no im-
agery is available at all. In fact, the following sections describe how the
selected DL alghoritm has been trained and used to detect the guardrail
type through the extracted images, only regarding main road in-
frastructures, which are the most urgent in terms of traffic safety.

2.3. Typological classification of guardrails

According to [5], in case a bridge guardrail is replaced, a new H2,
H3, or H4 type barrier must be installed depending on the type of road
(motorways, extra-urban roads, and urban roads) and traffic volume
(also as a percentage of commercial vehicles with mass higher than 3.5
tons). H2, H3, and H4 barriers have increasing containing capacity and
are usually installed on bridge edge curbs through chemical anchors.
Fig. 9 compares old bridge barriers (c and d) and a new H3 one (a and b)
(e.g., [31]).

As reported in [6], the main difference between old-type bridge
barriers and new, code-coforming ones, is that the latter feature the
presence of a 3-wave steel railing instead of a weaker 2-wave one
mounted on non-conforming barriers. Moreover, the connecting ele-
ments installed at the top of the device are more robust to permit a
stronger collaboration between consecutive posts, in order to increase
the device containing capacity.

Additional types of railings are reinforced concrete New Jersey (NJ)
barriers (Fig. 10a), concrete (plain o reinforced) and masonry walls
(Fig. 10b) and iron parapets (Fig. 10c). While NJ barriers could be
cosidered code conforming due their high crash resistance, both walls
and parapets cannot. In fact walls are not tested elements that may

457

3-wave

1410

a)
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Fig. 10. Additional barrier types: (a) Concrete NJ, (b) masonry or concrete wall
and (c) parapet.

guaratee the needed resistance. Moreover, they often feature sharp
edges and ends that can be dangerous in case of vehicle impact. On the
other hand, iron parapets are too weak to offer some impact resistance.
They easily fail even due to low energy impacts and cause the vehicle to
fall down the bridge. Therefore detections are assumed as in Table 3,
showing that when a non-conforming guardrail is correctly detected, it
represents a true positive (TP) detection, assuming positive the cases
that need barrier replacement. On the contrary, when a code-
conforming guardrail is correctly detected, it is a true negative (TN) in
the sense that it is properly identified the absence of any replacement
need.

Therefore, when a non-conforming barrier is uncorreclty identified,
it is a false positive (FP) while, when a code-conforming barrier is

Table 3
Guardrail classes and detection assumptions.
Barrier Abbreviation  Code Detection Detection
description conforming assumption class
Older type 2-w no TP 0
metallic
guardrail
Triple wave 3w yes TN 1
H2, H3 or H4
guardrail
Reinforce NJ yes TN 2
concrete NJ
guardrail
Masonry or RC Wall no TP 3
wall
Iron parapet Parapet no TP 4

TP = true positive; TN = true negative

Old-type

d)

Fig. 9. Grafical comparison between old- and new-type bridge barriers: new type with 3-wave guardrail (a) sketch and (b) picture of an installation. Old-type barrier

(c) installation and (d) sketch of the traditional 2-wave guardrail.
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wrongly identified, it is a false negative (FN). Table 3 also shows the
detection class that is a more concise class representation during the
annotation activities and output elaboration.

2.4. Image labelling and deep learning algorithm for safety barrier
detection

Once the images are retrieved from the API, they are processed using
the YOLOVS8 deep learning algorithm [32]. The YOLO (You Only Look
Once) algorithm is a real-time object detection model that frames
detection as a single regression problem. Unlike traditional methods that
apply region proposal and classification in multiple stages, YOLO pro-
cesses the entire image in just one step. It subdivides the image into a
grid and, for each cell, simultaneously predicts bounding boxes and class
probabilities. This unified architecture allows for extremely fast and
accurate detection, making it particularly suitable for large-scale ap-
plications such as infrastructure monitoring. This algorithm is trained to
detect and classify various types of safety barriers, such as guardrails and
concrete barriers. The goal is to identify whether the barriers are
compliant with current safety standards or if they need to be replaced. It
is worth noting that the identification of any damage occurred to the
barrier is out of the scope of this study.

By analysing the images, the system must automatically assess the
barrier type permitting to identify those that are non-compliant, facili-
tating the decision-making process for infrastructure maintenance.

This approach allows for efficient, large-scale monitoring of bridge
safety in a certain region, reducing the need for manual inspections and
enabling the use of automated tools for maintaining road safety
standards.

In order to train the YOLOv8 model to specifically recognize
guardrails with a relatively low effort, a first annotation task was
deployed, selecting 101 images according to Table 4. In order to increase
the number of images, two types of data augmentation were made: (i)
+15 % exposure variation and (ii) +2.5 % blur. These types of aug-
mentations are able to provide the model the ability of making pre-
dictions based on varying brightness conditions and also with respect to
low quality images having some blurry regions. Therefore, Table 4 re-
ports the total number of occurrences for each class.

It must be noted that NJ was very rare in the dataset available,
therefore training on that class is, as expected, unsuccessful. This pre-
vents the effective prediction of NJ class in the collected images. Some
examples of image annotation are reported in Fig. 11. As can be noted,
annotation was not made through rectangles including the wanted ele-
ments. In fact, polygons were used to better highlight the distinctive
portions of the barrier. Fig. 11a and b show polygons including the 2-w
and 3-w guardrail tapes since the goal is to detect the main element that
characterizes the barrier. There are many types of 2-w and 3-w guard-
rails. It is not interesting to establish which type of 2-w or 3-w barrier is
installed, but if the barrier features a 2-w or a 3-w rail, since this is
paramount to know whether it is code conforming or not. Using this
approach, also the background disturbance is significantly reduced.

2.5. Integrating open-source tools and deep learning algorithms

This methodology integrates OpenStreetMap (OSM) queries, Google
Street View (GSV) image retrieval, and YOLOv8 classification into a

Table 4

Count of annotated images.
Class name Count +15 % exposure +2.5 pixels blur Total
2-w 71 71 71 213
3-w 36 36 36 108
NJ 3 3 3 9
Wall 32 32 32 96
Parapet 22 22 22 66
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cohesive workflow designed for efficient safety barrier assessments on
road bridges. The individual steps detailed previously, were already
utilized singularly in previous studies [10,23,27] although their com-
bined use is a novelty and represents a significant advancement of this
study.

The integrated dataflow from bridge localization to guardrail type
detection was automated by means of Visual Basic for Application (VBA)
routines (Macros) integrated in an Excel workbook.

Referring to Fig. 12, in Worksheet 1, the process begins with Macro 1,
where bridges are extracted from OpenStreetMap (OSM) using a query
via the Overpass API This query identifies features tagged as "bridge-
=yes" within a specified geographic bounding box, retrieving relevant
data in CSV format. Macro 2 processes the extracted data by importing
the CSV file into the workbook, assigning unique identifiers to each
bridge, and calculating their lengths based on geographic coordinates.
The Atan2 function is used to determine heading values, which are then
included in Google API requests. These requests fetch Google Street
View images for each bridge, which are stored in a specific folder. Macro
3 employs the YOLOv8 model to infer objects within the saved images.
The results include labels, bounding boxes, and confidence scores, which
are saved in a text format. Macro 4 imports these inference data labels
into Worksheet 2, organizing them into columns that feature bridge IDs,
class names, and confidence values.

Worksheet 2 focuses on class predictions and uses Macro 5 for
analysis. This macro sets up a pivot table to structure the prediction data
and applies filters to identify bridges that need guardrail replacement.
The filtered data is then exported to Google My Maps to visualize the
geographical locations of the affected bridges (Fig. 3f).

In Worksheet 3, Macro 6 handles cost computations. It calculates the
total bridge lengths requiring guardrail replacement and estimates the
associated costs. Finally, bridges are prioritized for replacement based
on their road type and length, ensuring an optimized resource alloca-
tion. This workflow integrates OSM, Google APIs, and the YOLOv8
model to streamline the evaluation and prioritization of bridge safety
interventions.

This streamlined framework represents a key innovation, automating
the process and enabling even non-technical users to leverage advanced
tools effectively.

3. Analysis of results

The trained YOLOVS algorithm was applied to a subset of 776 bridges
(each one corresponding to a single image) belonging exclusively to the
major infrastructures in Basilicata region. The application process is
remarkably fast, requiring only a few minutes to process the entire
dataset.

The predictions were evaluated using a test set of 194 images, cor-
responding to 25 % of all the images considered. For each image, the
algorithm provided one or more object classes along with their respec-
tive confidence scores. The final class assigned to each image was the
one with the highest confidence. The comparison with the annotations
of the test set images permitted to obtain the real guardrail type distri-
bution over the test set, as reported in Fig. 13.

As expected for major road infrastructures, the presence of Wall and
Parapets guardrails is low, being 3.1 % and 1.0 %, respectively. While
the majority of barrier are code conforming 3-w guardrail, a significant
share (46.4 %) is represented by 2-w outdated barriers. Some examples
of guardrail detections are shown in Fig. 14.

In order to evaluate the detection capacity of the trained algorithm,
one must consider that the Intersection over Union (IoU) metric is
commonly used to assess the degree of overlap between predicted
bounding boxes and the ground truth bounding boxes. IoU is calculated
as the ratio of the intersection area to the union area of the two boxes,
and it is critical for determining whether a predicted box is accurate.
However, in this specific problem, the focus is just on classification
rather than precise localization of objects. The objective is to identify the
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Fig. 11. Examples of image annotations: (a) 2-w, (b) 3-w, (c¢) NJ, (d) Wall, (e) Parapet.

WorkSheet 1 - Bridge database construction and GSV image extraction

Macro 1 - Extracting bridges from OSM 2.5 Execution Google API requests for each
[out:Json] [timeout:25]; bridge, saving GSV images into a specified
( folder

way[ “bridge"="yes"](bounding_box); Macro 3 - Inferring extracted images with
relation["bridge"”="yes"](bounding_box); YOLOVS
)

out body; yolo task=detect *
>; mode=predict *
out skel qt; model=C:/MyYoloTraindedModelPath/runs/ *

detect/train6/weights/best.pt #
source=C:/MySavedGSVimages *
Macro 2 e 8

save=True *

2.1 Importing data from CSV generated and
dowloaded from OSM;

2.2 Assigning unique bridge IDs

2.3 Calculating bridge lenghts from Lat. & Lon.

2.3 Calculation of Atan2 (as heading values in
Google APl request)

2.4 Generation of Google API requests for each
bridge

save_txt=True *

save_conf=True

Macro 4 - Importing data labels deriving from
inference into Worksheet 2 featuring
11 columns (IDs, 5 classes names, 5
confidence values);

/ WorkSheet?2 - Class predictions \ /WorkSheetS — Cost computation \

Macro 5- Macro 6 -

5.1 Setting up pivot table for prediction data 6.1 Calculating bridge length needing
analysis guardrail replacement

5.2 Filtering bridges needing guardrail 6.2 Calculating cost for bridge needing
replacement guardrail replacement

5.3 Exporting data to Google Mymaps for 6.3 Prioritization based on Road Type and

\ bridge geographical visualization / k Length /

Fig. 12. Workflow of the integrated bridge guardrail assessment procedure.
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Fig. 13. Distribution of guardrail types over the test set.

correct class associated with each image, regardless of the exact position
of the bounding boxes. Therefore, IoU is not relevant in this context, as
the evaluation does not depend on spatial accuracy but rather on the
model’s ability to assign the correct class to each instance.

Therefore, the used metrics were Accuracy, Recall (R), Precision (P),
and F1-Score defined as follows:

TP + TN

ACCUraty = op  Ep L IN + BN M
P

R=Tp i 2
P

P= TP + FP 3
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p.
F1.score = 2-—R

P+R @

Where:

o TP: True Positives
e FP: False Positives
e TN: True Negatives
e FN: False Negatives

In this application, a False Negative represents a failure to recognize
a non-compliant barrier, which could lead to lack of action on a possibly
vulnerable structure. Such oversights could have serious safety impli-
cations, as these barriers may not meet the necessary standards for
protecting road users.

While Precision measures how many of the predicted non-compliant
barriers are actually correct, it is less critical in this case because False
Positives (FP) simply result in additional checks on barriers that are
ultimately compliant, which is less dangerous than missing a non-
compliant one.

Therefore, prioritizing Recall aligns with the safety-first approach
required in this domain, ensuring a thorough identification of non-
compliant barriers to mitigate potential risks.

To better understand the performance of the algorithm, the test set
was divided based on confidence thresholds. Table 5 summarizes Recall
and False Positive Rate (FPR) across different thresholds:

Summarizing the previous metrics, the following results are
obtained:

e Accuracy: 0.912
e Recall (R): 0.928
e Precision (P): 0.900

(d)

Fig. 14. Examples of detections of (a) 3-w, (b) 2-w, (c) Parapet and (d) Walls.
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Table 5

Detection results over the test set.
Confidence TP FP TN FN Recall FPR
0.4 7 4 4 1 0.875 0.500
0.5 15 5 6 2 0.882 0.455
0.6 24 5 12 6 0.800 0.294
0.7 35 7 18 6 0.854 0.280
0.8 49 9 24 6 0.891 0.273
0.9 63 10 42 7 0.900 0.192
1 90 10 87 7 0.928 0.103

e F1-Score: 0.914

These values indicate that the algorithm performs well in detecting
relevant objects while maintaining a high level of Precision. Accuracy
measures the proportion of correct predictions made out of all pre-
dictions and provides an indication of how often the model is correct in
its classifications. The high value achieved demonstrates the model’s
effectiveness. The high F1-Score highlights a good balance between
Recall and Precision.

Data in Table 5 shows that as the confidence threshold increases
Recall improves, reaching a maximum of 0.93 at a confidence of 1.0.
This indicates that higher confidence thresholds lead to fewer False
Negatives, as expected; FPR decreases significantly, reaching 0.10 at the
highest confidence threshold. This highlights the algorithm’s ability to
reduce False Positives at higher confidence levels.

The relationship between Recall (and FPR) and confidence thresh-
olds is depicted in the graph of Fig. 15, demonstrating the algorithm’s
performance at varying levels of confidence. Moreover, the Recall local
minimum value at Confidence 0.6 depends on the sharp increase of FN
as the Confidence passes from 0.5 to 0.6.

This graph confirms the expected trend: as confidence increases, the
TPR improves, and the FPR drops. This behaviour aligns with the goal of
optimizing both Recall and Precision at higher confidence levels. The
results further validate the robustness of the trained YOLOv8 algorithm
for automatic classification tasks on major infrastructure datasets.

In order to understand the model’s detection capacity about single
classes, the normalized confusion matrix is depicted in Fig. 16. This
latter reveals the performance of the classification model across five
safety barrier classes: 2-w, 3-w, NJ, Parapet, and Wall. The results show
that the model provides high classification accuracy for the 2-w and 3-w
classes, correctly identifying 92 % of the instances. However, there is
some overlap between these two classes, with 7 % of 2-w barriers mis-
classified as 3-w and vice versa. In fact, these classes share similar fea-
tures, related to the 2-w steel tape that in some lighting condition or in

——Recall
0.6

—e—FPR

Recall

04

0.2

0.0

0.4 0.6 0.8 1
Confidence

Fig. 15. Recall and FPR as a function of confidence.
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Fig. 16. Results of YOLOVS in terms of normalized confusion matrix.

presence of vegetation may potentially be confused with 3-w and vice
versa. For the NJ class, the performance is remarkably lower, with an
accuracy of only 33 %. As expected, NJ misclassifications are with Wall
classes but also regarding 3-w, indicating that the distinguishing fea-
tures of NJ barriers are not well captured by the model. However, this
does not impact so much the overall procedure since very fewer NJ cases
are present in the database.

On the contrary, the model performs perfectly for the Parapet and
Wall classes, achieving 100 % accuracy. These results indicate that these
classes possess evident features the model is able to learn effectively,
leading to no observed misclassifications.

Given the mentioned misclassification problems, future improve-
ments could include enlarging the training set, applying more diverse
augmentation, and incorporating additional features like texture or
background context. Rare classes like NJ barriers are more difficult to
detect due to the small sample size, and this will also be acknowledged
with possible solutions such as targeted data collection or synthetic data
generation.

4. Cost analysis and prioritization

Once the trained deep learning model’s ability has been checked
through the previously mentioned metrics, the result in terms of
guardrail classification can be assumed reliable and helpful in a regional
cost prediction about the replacement of safety barrier along the
selected major road infrastructures. The previous analysis show that
Wall- and Parapet-type barriers are negligible over these infrastructures,
and therefore in the following cost predictions, only 2-w guardrails will
be considered.

It must be noted that, the cost prediction is based on [6], in which
parametric costs were reported based on the price list of ANAS [33],
which is the major road management body in Italy. The technical so-
lutions are also based on the design manual issued by the same agency
[34] and foresee the guardrail replacement along with the strengthening
of the cantilever part of the slab [6]. As can be seen from Fig. 17, the unit
length cost varies between 744 €/m and 1042 €/m, according to the
width of the bridge slab to be strengthened. It is also assumed that in
place of the 2-w guardrail a H4 (the highest containment class)
code-conforming guardrail is installed.

Adopting a mean cost value equal to C = 893 €/m and considering
that each bridge equipped with non-compliant guardrails has two sides
needing replacement, the total intervention cost can be easily computed.

As presented in Table 6, the total cost of intervention to replace 2-w
barriers overcomes 67 million Euro. Considering that the used price list
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Fig. 17. Guardrail replacement cost (Adapted from [6]).

Table 6

Summary of cost calculations.
Data description Amount Units
Number of bridges on major infrastructures 776 -
Number of bridges equipped with 3-w guardrails 454 -
Number of bridges equipped Parapets, Walls and NJ 29 -
Number of bridges equipped with 2-w guardrails 293 -
Length of bridges equipped with 2-w guardrails 37.54 km
Length of guardrails replacement 75.09 km
Mean cost of intervention C 893 €/m
Total cost of intervention 67.05 M€

dates to year 2022, the actualized cost in 2025 would correspond to 71.5
million Euro.

Besides the cost prediction to make all bridge barriers code-
compliant, a prioritization scheme is needed to obtain an optimal
resource allocation. The scheme used in this study is based on the fact
that major road infrastructures are more prone to accidents due to
higher speed, larger traffic volume and higher percentage of commercial
vehicles, which are more likely to cause the guardrail collapse in case of
an impact [6]. Therefore, higher priority is given to bridges on these
road infrastructures according to the order of Table 1. When dealing
with bridges on the same road type, the priority is assigned based on
length values, in the sense that longer bridges must have a higher pri-
ority. In fact, the probability that an accident happens increases with the
bridge length. This approach, although reasonable, lacks data on real
traffic volumes. In fact, it is assumed that infrastructures within the same
road type have equal traffic volumes, and this is generally false,
although in some cases differences may be negligible. The resulting list
of priorities is not reported due to discretion, even though the bridges
needing barrier replacement are visually located in Fig. 3(f).

5. Discussion

The proposed methodology for automating the classification of
safety barriers on bridges represents a significant advancement in the
management of critical infrastructure. This approach, utilizing open-
source data such as OpenStreetMap (OSM) and the Google Street View
API alongside deep learning algorithms like YOLOVS8, addresses multiple
challenges faced by local authorities responsible for road safety in an
integrated manner. Strengths and limitations of the proposed method-
ology are summarized in the flowchart of Fig. 18.

One of the key advantages of the methodology is its use of publicly
available data and scalable computational tools. The use of OSM for
extracting bridge coordinates and Google Street View for image retrieval
eliminates the need for expensive and time-consuming data acquisition
technologies such as laser scanning or drone surveys. This makes the
approach highly cost-effective and accessible to local road authorities
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Fig. 18. Strengths and limitations of the proposed methodology.

with limited budgets and technical expertise. The capability to process
large datasets in just a few minutes further evidences its practical value,
allowing for rapid assessments of large road networks. However, for
some bridges, the starting coordinates could be imprecise and this may
impact on the Street View images that may refer to a guardrail on a road
portion before the bridge.

The use of Google Street view API allows to have open access to
valuable images, practically worldwide, and big set of image can be
retrived rapidly. In most cases these images are up to date and present
the actual condition of bridge barriers.

On the other hand, when the bridge at hand is an overpass, some-
times the provided image is related to the road below, that is not useful
for the scope. Moreover, as seen before, bridges on minor roads could be
not covered by this service.

To overcome these issues, when GSV images are not available, the
only solution is to carry out a manual inspection to collect the necessary
data. Conversely, the issue of inaccurate bridge coordinates can be
identified by examining the initial GSV image: if the heading angle is
incorrect, the guardrails may not be visible. Bridges affected by this
problem can be easily and automatically identified, as the YOLO algo-
rithm produces no detections—an unlikely outcome, since every bridge
should feature either a compliant or non-compliant barrier. This specific
issue can be resolved by manually retrieving the correct image from GSV
using a manually adjusted heading angle. Although these steps require
some manual intervention, addressing such issues would significantly
enhance the overall applicability of the proposed methodology.

Finally, YOLO object detection algorithm is known for his speed of
elaboration, which does not even need particularly powerful computers.
The trained model has a general validity for a given country. For
example in Italy guardrail type are quite uniform alongside the different
regions, and the resulting model can be used also for regions different
from that one the model is trained on. While the whole method is
technically applicable worldwide (as OSM and Google Street View are
available in many regions), its effectiveness in countries other than Italy
depends on the need to train the YOLO algorithm with respect to local
barrier types, in order to be adapted for its intended use.

Overall, the major stength of the methodology is represented by the
possibility to easily integrate different steps into a simple software tool
and to operate remotely, greatly reducing inspections, personnel and
expensive devices requirements.

The application of the methodology to a subset of 776 bridges in
Basilicata region highlights its practical utility. By focusing on major
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road infrastructures, where traffic volumes and safety risks are highest,
the study effectively identifies the structures needing intervention. The
analysis of a test set comprising 194 images demonstrated the robustness
of the YOLOvS8 algorithm, which achieved Accuracy of 0.912, Recall of
0.928, Precision equal to 0.900 and F1-Score 0.914. These metrics un-
derline the algorithm’s ability to accurately classify guardrails, partic-
ularly in detecting non-compliant ones.

The results also show the importance of focusing on Recall in this
context. A high Recall values ensures that the majority of non-compliant
guardrails are identified, thus minimizing the risk of leaving unsafe
structures undetected. False negatives, in this context, could lead to
serious safety risks and potentially catastrophic consequences. Event
tough Precision is less critical, the high value achieved in the study
evidences that the algorithm results a low rate of false positives,
reducing unnecessary inspections or interventions. However, a certain
level of false positives is acceptable in the context of this study, as the
primary objective is not to achieve perfect classification on every single
bridge, but rather to provide a reliable estimate of the barriers that may
require replacement for prioritisation purposes.

The analysis of results based on confidence thresholds provides
deeper insights into the algorithm’s performance. As the confidence
threshold increases, the False Positive Rate (FPR) decreases to 0.10. This
trend is in line with the expectation that higher confidence thresholds
yield more reliable classifications, reducing the probability of false
negatives.

The cost analysis presented in the study provides a valuable
perspective on the economic implications of replacing non-compliant
barriers. The estimated cost of €71.5 million for replacing 2-wave bar-
riers with code-compliant 3-wave barriers underscores the financial
burden of ensuring passive road safety on bridges. The proposed prior-
itization scheme puts in evidence the importance of Road Type data and
bridge length although needing accurate data on traffic volumes.
Overall, the cost computation highlights the necessity of accurate and
efficient classification methods to prioritize interventions and allocate
resources effectively.

Referring to the 776 bridges inferred by the procudere, acting thor-
ugh tradidional bridge visual inspections (with lane closures) would
take 194 days (4 bridges per day, see Section 2) and 10 days using high-
resolution cameras mounted on a vehicle with subsequent data analysis.
Using the proposed methodology only requires few hours since it could
be based on the already trained model (the one proposed here).
Furthermore, the proposed methodology provides fully connection of
visual (GSV) and non visual data (bridge data) with geographic loca-
tions, permitting the full exploitation of open source tools. The time and
cost savings obtained through this approach are not quantified here but
represent an important added value for a timely prioritization of
maintenance interventions.

6. Conclusions

The proposed methodology provides an innovative approach to
infrastructure management and demonstrates the feasibility of large-
scale assessments of bridge safety barriers along with the following
main strengths:

e It minimizes the manual effort allowing to operate with a fully
automated and remote approach, which significantly reduces the
time and cost associated with manual inspections, allowing for faster
and more comprehensive assessments of road infrastructure.

The proposed framework can be applied to the entire Italian country
and also exported to different countries with the only need to train
the YOLO model based on local types of guardrails, considering that
OSM and Street View data are available almost globally.

The integrated data retriving and analysis approach does not require
sophiticate software tools nor powerful computer infrastructure,
being based on simple VBA routines concatenated each other.
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The methodology applied to 776 bridges in Basilicata region showed
its practical utility in detecting and classifying safety barriers. The re-
sults from a test on 194 images revealed a high Recall equal to 0.928,
ensuring that the majority of unsafe barriers are identified, addressing a
critical priority in road safety.

Therefore, the methodology enables critical entities (road manage-
ment bodies) to prioritize interventions on high-risk structures, opti-
mizing resource allocation and increasing the asset management
sustainability.

A possible future development could be represented by the possi-
bility to assess eventual guardrail physical damage or deterioration,
which are critical factors in assessing barrier safety, even for code con-
formin ones. Incorporating damage detection capabilities into the
framework could further enhance its utility. Such a damage detection
YOLO model would be separate from the classification model, and could
be specific for each barrier type. This would require each damage
detection model to be applied after the inference, based on the classi-
fication result.
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